Introduction

GPR40/FFA1 receptor, a G-protein-coupled receptor (GPCR), couples predominantly to phospholipid-hydrolyzed 4,5-bisphosphate into diacylglycerol and inositol 1,4,5-triphosphate (Ghislain and Poitout, 2017, Handb Exp Pharmacol).

As insulin and incretins are pivotal for glycemic control (Nauck and Meier, 2018, Handb Exp Pharmacol), GPR40 full agonists may provide efficacy on glucose control was durable.

SCO-267 is being prepared for Ph1 SRD study.

Contact information

SCHOIA PHARMA, Inc., Kanagawa, Japan. Takeda Pharmaceutical Company Limited, Kanagawa, Japan

Methods

Cellular response to compound treatment was tested in chinese hamster ovary (CHO) dhfr- cells (Clones #104 and #2) stably expressing human GPR40 (Yabuki et al., 2013, PLoS One 8(6):e67258).

Effects of single oral dose of each compound on glucose tolerance were tested in male N-STZ-1.5 Wistar Kyoto rats (N-STZ-1.5 rats, 25-week-old for SCO-267 vs fasiglifam study; 32 week-old for SCO-267 vs AM-1638 study), which are diabetic, were developed via subcutaneous administration of 120 mg/kg streptozotocin (STZ) to Wistar rats (KACTS, LTD, Kyoto, Japan) at 1.5 days after birth.

Insulin and glucose response upon oral glucose load after a repeated dosing (~2 weeks) was tested in 27-week-old rats.

Effects of SCO-267 on body weight control in obese condition was tested in 49-week-old diet-induced obese (DIO) rats (baseline body weight, 487 g).

Toxicological studies were performed according to the guidelines.

Table 1: Ca²⁺ influx activity in human GPR40-expressing CHO cells.

<table>
<thead>
<tr>
<th>Test material</th>
<th>EC₅₀(nM/L)</th>
<th>EC₅₀(μM/L)</th>
<th>Fmax (μmol/L)</th>
<th>Inositol (μmol/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fasiglifam</td>
<td>0.3±1.7</td>
<td>0.12±0.14</td>
<td>159±20</td>
<td>0.17±0.01</td>
</tr>
<tr>
<td>AM-1638</td>
<td>24±17</td>
<td>100±22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle</td>
<td>100±10</td>
<td>100±22</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GPR40 full agonists can activate the enteroendocrine system while stimulating insulin and incretin secretion (Luu et al., 2012, Endocrinology 153:1460-1469).

SCO-267 was much effective in improving glucose tolerance than clinical level exposure of fasiglifam in diabetic rats.

Efficacy in improving glucose tolerance was much better to fasiglifam after the repeated administration in diabetic rats.

SCO-267 effectively decreased body weight in DIO rats.

Table 2: Efficacy on body weight control and glucose tolerance in N-STZ-1.5 rats

<table>
<thead>
<tr>
<th>Parameters</th>
<th>SCO-267 0.3 mg/kg (N-STZ)</th>
<th>Fasiglifam 3 mg/kg (N-STZ)</th>
<th>Vehicle (N-STZ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose AUC0-120 mg/dL</td>
<td>[95% CI]</td>
<td>[95% CI]</td>
<td>[95% CI]</td>
</tr>
<tr>
<td>Insulin AUC0-60 min</td>
<td><0.05</td>
<td><0.05</td>
<td>>0.05</td>
</tr>
<tr>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: A single dose effects of SCO-267 and AM-1638 in N-STZ-1.5 rats

Figure 2: A repeated dose effects of SCO-267 in N-STZ-1.5 rats

Figure 3: A repeated dose effects of SCO-267 in DIO rats

Figure 4: A repeated dose effects of SCO-267 in DIO rats

GPR40 full agonist, SCO-267 stimulated insulin, GLP-1, and PYY secretion in rats. SCO-267 effectively improve glucose control and exert strong efficacy in rats with diabetes. In addition, body weight loss was observed in obese rats. Thus, SCO-267 was effective in improving diabetes and obesity in rats and may induce similar favorable effects in patients with diabetes and obesity.

SCO-267 is being prepared for Ph1 SRD study.

Contact information

https://www.scohia.com/eng/sys/contact_research_or_pipeline/