P151

EFMC-ISMC & EFMC-YMCS Virtual Poster Session, September 9, 2020

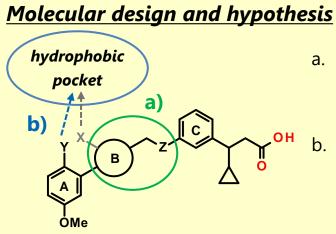
DESIGN AND IDENTIFICATION OF A GPR40 FULL AGONIST (SCO-267) POSSESSING A 2-CARBAMOYLPHENYL PIPERIDINE MOIETY FOR THE TREATMENT OF TYPE 2 DIABETES MELLITUS

<u>Naoyoshi Noguchi¹, Yasufumi Miyamoto², Hideki Furukawa², Yasuhiro Hirata², Koji Watanabe¹, Yuko Hitomi², Yayoi Yoshitomi², Jumpei Aida², Nobuyuki Takakura², Kazuaki Takami²,</u> Seiji Miwatashi², Yoshihiko Hirozane², Teruki Hamada², Ryo Ito², Mitsugi Ookawara¹, Yusuke Moritoh¹, Masanori Watanabe¹, Tsuyoshi Maekawa¹ ¹SCOHIA PHARMA, Inc., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan. ²Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan.

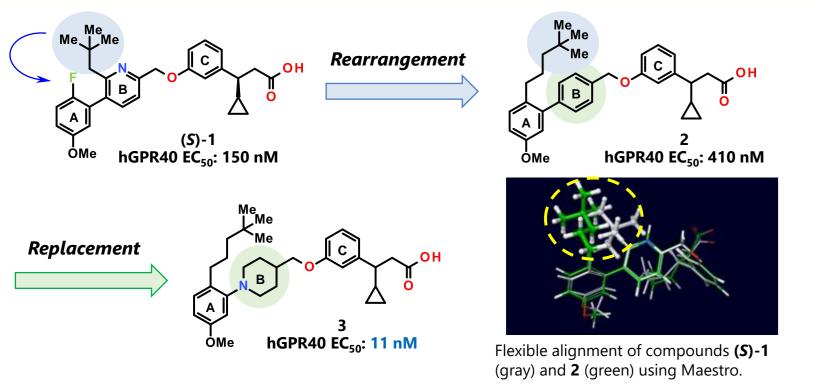
Introduction

- GPR40 is a G-protein-coupled receptor expressed in pancreatic islet cells and enteroendocrine cells, and its activation stimulates insulin and incretin secretion (Mancini and Poitout, 2013, Trends Endocrinol Metab 24:398-407.)
- Insulin and incretin hormones are the pivotal regulators for glycemic control (Nauck and Meier, 2018, Diabetes Obes Metab 20 Suppl 1:5-21.)
- GPR40 full agonists can activate the enteroendocrine system while stimulating insulin secretion (Luo et al., 2012, PLoS One 7:e46300.)
- As GPR40 partial agonists improve glycemic control in patients with diabetes (Kaku et al., 2016, Diabetes Obes Metab 18:925-929.), GPR40 full agonists are expected to provide superior efficacy and additional benefits in patients with metabolic diseases
- In this poster, we will describe the design, structure-activity relationships, and pharmacological effects of **SCO-267** as a potent and orally bioavailable GPR40 full agonist

New Lead Generation

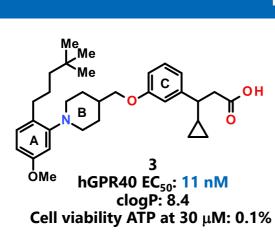

<u>Challenges of compound (S)-1</u>

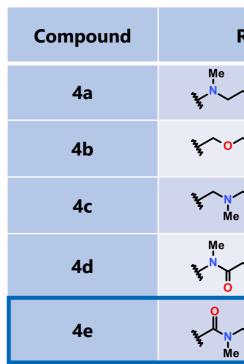
Aromaticity (negative impact on overall physicochemical properties etc.) • Insufficient agonistic activity


nitial SAR

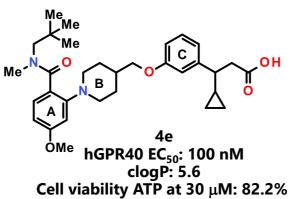
• The hydrophobic substituent and the terminal aromatic rings (A and C) are essential for potent agonistic activity

WO2013122029


- The central aromatic ring (B) of **(S)**-1 would serve as just a linker to keep the position and distance of terminal aromatic rings (A and C), therefore, would be replaced with a saturated ring system
- Fluorine-substituted position of (S)-1 would easily access the presumed hydrophobic pocket that the neopentyl alkyl chain of (S)-1 occupies

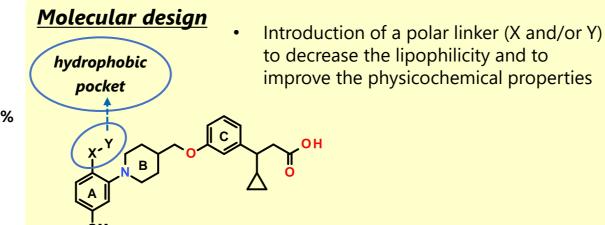

- Rearrangement of the hydrophobic moiety on the central ring (B) to the terminal ring (A) retained agonistic activity
- 4-Methyl piperidine ether 3 was identified as a new lead compound which showed potent agonistic activity

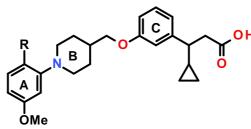
SCOHIA PHARMA, Inc.


Contact information: https://www.scohia.com/eng/contact_en/

Effect of Substituent on the Benzene Ring A

clogP value: <6.0)

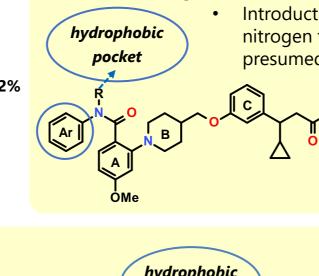

<u>Hypothesis</u>		
amide-trans	4.	7 kcal/mol


• The structure of *N*-methylbenzanilide derivatives place the aromatic ring in *cis* conformation to each other, and the methyl substituent on nitrogen is *cis* to the carbonyl group

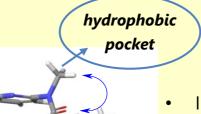
Lead Optimization

Challenge of compound 3

Highly lipophilic property

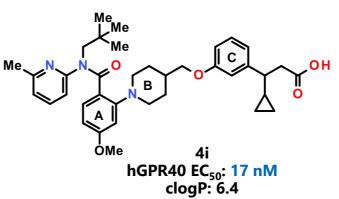

R	hEC ₅₀ nM	E _{max}	clogP	Cell viability ATP % at 30 μM
Me Me	190	108%	7.6	0.1
Me Me	97	112%	6.5	0.1
Me Me	1000	110%	4.0	80.7
∕∽∕ ^{Me} Me	2200	96%	5.8	76.4
Me Me Me	100	107%	5.6	82.2

Introduction of amide moiety as a linker led to the improvement of druggability especially for lipophilicity and cell viability (set the target


Challenge of compound 4e

Insufficient agonistic activity

Molecular design

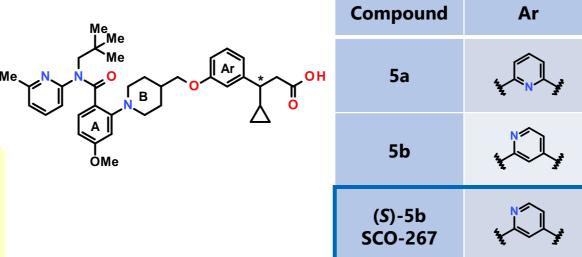

Introduction of aromatic ring onto the amide nitrogen to restrict the N-alkyl moiety to the presumed hydrophobic pocket

Incorporation of suitable lipophilic moiety onto the nitrogen group of the benzanilide moiety would enhance the agonistic activity

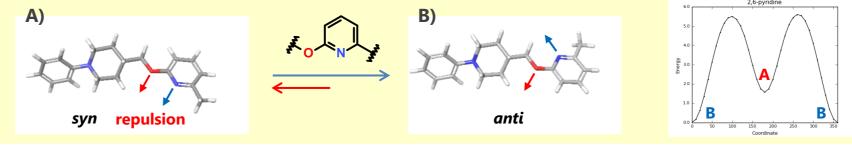
Effect of Substituents on the Amide Group Compound 4f 4g Me 4h Me N 3

- Incorporation of aromatic ring and suitable lipophilic moiety dramatically impacted agonistic activity
- Introduction of a *"magic methyl"* group onto the pyridine ring led to a discovery of 4i with a good balance between agonistic activity and lipophilicity

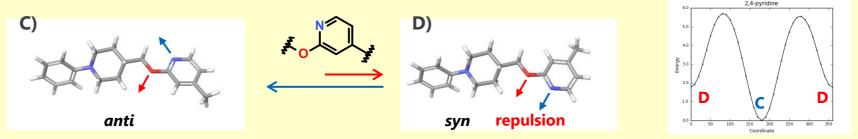
Challenge of compound 4i

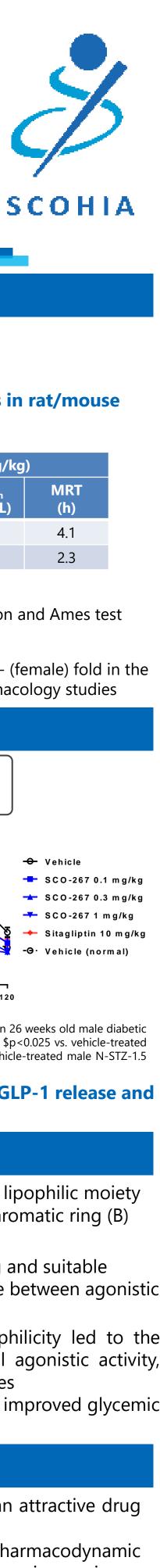

(Target clogP value: <6.0)</p>

Molecular design

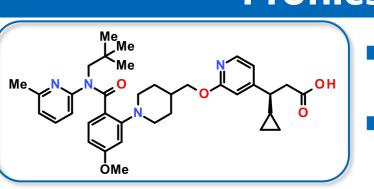

Replacement of the benzene ring (C) with a 2-alkoxy pyridine ring to reduce the lipophilicity

Basic property is NOT tolerable


Effect of Polar Aromatic Ring of Phenyl Propanoic Acid Moiety


2,6-disubstituted pyridine (5a): presumed active conformer A is less stable than B

<u>2,4-disubstituted pyridine (5b)</u>: presumed active conformer C is more stable than D


- 2,4-Disubstituted pyridine derivative 5b retained agonistic activity with decreased lipophilicity
- (S)-5b (SCO-267) was identified as an eutomer based on its agonistic activity

_o nM	E _{max}	clogP		
40	101%	5.5		
80	105%	4.0		
26	110%	5.9		
17	109%	6.4		

\rightarrow ι_{0}

hEC ₅₀ nM	E _{max}	clogP
39% at 10 μM	-	5.8
17	112%	5.8
12	108%	5.8

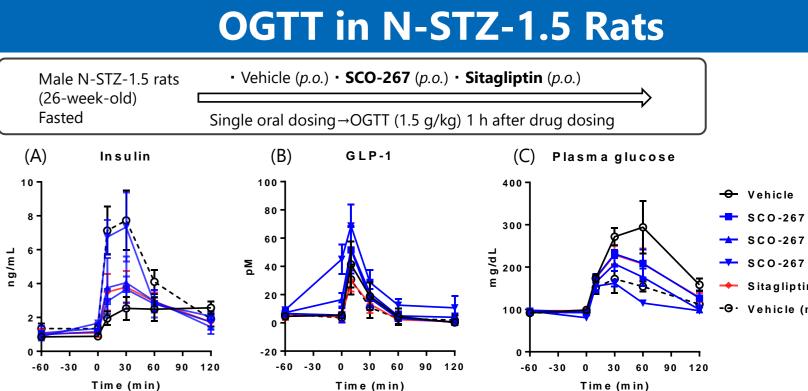
Profiles of SCO-267

GPR40 agonistic activity

human GPR40 EC₅₀: 12 nM

Pharmacokinetic profiles in rat/mouse

Good oral bioavailability


		Intravenous (0.1 mg/kg)		Oral (1 mg/kg)		
Species	F (%)	CL _{total} (mL/h/kg)	Vss (mL/kg)	Cmax (ng/mL)	AUC _{0–8h} (ng∙h/mL)	MRT (h)
rat	16	1478	3094	19.9	126.6	4.1
mouse	26	2584	1349	33.2	98.7	2.3

In vitro Tox assessment

Good cell viability profile (ATP: 92.1% at 30 μ M), No risk of hERG inhibition and Ames test

In vivo Tox assessment

Wide safety margin (633- (male) to 776- (female) and 471- (male) to 421- (female) fold in the rat and dog 4-week studies, respectively), No concerns in the safety pharmacology studies

Effect of single administration of SCO-267 and sitagliptin on hormone secretion and glucose tolerance in 26 weeks old male diabetic N-STZ-1.5 rats. Plasma insulin (A), total GLP-1 (B), and glucose levels (C) in male N-STZ-1.5 rats. # and \$p<0.025 vs. vehicle-treated male N-STZ-1.5 rats by one-tailed Williams' test and Shirley-Williams test, respectively. *p<0.05 vs. vehicle-treated male N-STZ-1.5 rats by Student's *t*-test. Values are means \pm S.D. (n = 6 for each group)

A single dose of SCO-267 stimulated insulin secretion and GLP-1 release and ameliorated glucose tolerance in male N-STZ-1.5 rats

Summary

- New lead compound 3 was discovered by rearrangement of the lipophilic moiety onto the terminal aromatic ring (A) and replacement of central aromatic ring (B) with piperidine linker
- Introduction of amide linker, then incorporation of aromatic ring and suitable lipophilic moiety onto the amide nitrogen showed good balance between agonistic activity and lipophilicity
- Further optimization of terminal ring (C) to reduce the lipophilicity led to the identification of SCO-267, which exhibited potent GPR40 full agonistic activity, good oral bioavailability, and favorable in vitro/in vivo Tox profiles
- **SCO-267** stimulated insulin and GLP-1 secretion and effectively improved glycemic control in N-STZ-1.5 rats

Conclusion

- A first-in-class GPR40 full agonist **SCO-267** is expected to be an attractive drug for the treatment of type 2 diabetes mellitus
- Ph1 clinical study to evaluate safety, pharmacokinetics, and pharmacodynamic effect in healthy adults and people with impaired glucose tolerance is ongoing