

Discovery of SCO-267, a First-in-class GPR40 Full Agonist, as a Promising Candidate for the Treatment of Type 2 Diabetes Mellitus, Obesity, and NASH

Naoyoshi Noguchi, Ph.D. on behalf of the GPR40 PJ Team Research Division, Drug Discovery Chemistry Laboratory SCOHIA PHARMA, Inc.

EFMC-ISMC Virtual Event 2020

First Time Disclosures & Late Breaking News

Online 🛗 September 7-8, 2020

1. Introduction

2. Med. Chem. Campaign to Discover SCO-267

3. Pharmacological Efficacy of SCO-267

- Single Dosing and Repeated Dosing Effects in N-STZ-1.5 Rats (Diabetic Model)
- Repeated Dosing Effects in DIO-rats (Obese Model)
- Single Dosing and Repeated Dosing Effects in CDAHFD-fed Mice (NAFLD Model)

4. Summary

Agenda

1. Introduction

2. Med. Chem. Campaign to Discover SCO-267

3. Pharmacological Efficacy of SCO-267

- Single Dosing and Repeated Dosing Effects in N-STZ-1.5 Rats (Diabetic Model)
- Repeated Dosing Effects in DIO-rats (Obese Model)
- Single Dosing and Repeated Dosing Effects in CDAHFD-fed Mice (NAFLD Model)

4. Summary

GPR40/FFAR1

- GPCR activated by endogenous ligands of medium-to-long chain fatty acids
- Expressed in pancreatic islet cells and enteroendocrine cells
- Partial agonist Fasiglifam
 - Markedly improved glycemic control by increasing *insulin* secretion in patients with T2DM ۲

SCOHIA

- GPCR activated by endogenous ligands of medium-to-long chain fatty acids
- Expressed in pancreatic islet cells and enteroendocrine cells
- Partial agonist Fasiglifam
 - Markedly improved glycemic control by increasing *insulin* secretion in patients with T2DM
- Full agonist
 - Stimulates secretion of not only *insulin*, but also *GLP-1*, *GIP*, *PYY*, and *glucagon*

SCOHIA

- **Full agonist**
 - Stimulates secretion of not only *insulin*, but also *GLP-1*, *GIP*, *PYY*, and *glucagon*

GPR40 full agonist is expected to be a new drug option for the treatment of *diabetes*, *obesity*, and *NAFLD/NASH*

SCOHIA

1. Introduction

2. Med. Chem. Campaign to Discover SCO-267

3. Pharmacological Efficacy of SCO-267

- Single Dosing and Repeated Dosing Effects in N-STZ-1.5 Rats (Diabetic Model)
- Repeated Dosing Effects in DIO-rats (Obese Model)
- Single Dosing Repeated Dosing Effects in CDAHFD-fed Mice (NAFLD Model)

4. Summary

8

Challenges of compound (S)-1

- Aromaticity (negative impact on overall physicochemical properties, DMPK profiles...)
- Insufficient agonistic activity

Previously reported GPR40 full agonist

(WO2013122029)

Challenges of compound (S)-1

- Aromaticity (negative impact on overall physicochemical properties, DMPK profiles...)
- Insufficient agonistic activity

Initial SAR

• The hydrophobic substituent and the terminal aromatic rings (A and C) are essential for potent agonistic activity

10

Challenges of compound (S)-1

- Aromaticity (negative impact on overall physicochemical properties, DMPK profiles...)
- Insufficient agonistic activity

Initial SAR

• The hydrophobic substituent and the terminal aromatic rings (A and C) are essential for potent agonistic activity

Molecular design and hypothesis

a. The central aromatic ring (B) of compound **(S)-1** would serve as just a linker to keep the position and distance of terminal aromatic rings (A and C), therefore, would be replaced with a saturated ring system

Challenges of compound (S)-1

- Aromaticity (negative impact on overall physicochemical properties, DMPK profiles...)
- Insufficient agonistic activity

Initial SAR

• The hydrophobic substituent and the terminal aromatic rings (A and C) are essential for potent agonistic activity

Molecular design and hypothesis

- a. The central aromatic ring (B) of compound **(S)-1** would serve as just a linker to keep the position and distance of terminal aromatic rings (A and C), therefore, would be replaced with a saturated ring system
 - Fluorine-substituted position of compound **(S)-1** would easily access the presumed hydrophobic pocket that the neopentyl alkyl chain of compound **(S)-1** occupies

Flexible alignment of **(S)-1** (gray) and designed compound (green) using Maestro.

Molecular design and hypothesis

- a. The central aromatic ring (B) of compound **(S)-1** would serve as just a linker to keep the position and distance of terminal aromatic rings (A and C), therefore, would be replaced with a saturated ring system
 - Fluorine-substituted position of compound **(S)-1** would easily access the presumed hydrophobic pocket that the neopentyl alkyl chain of compound **(S)-1** occupies

Flexible alignment of compounds **(S)-1** (gray) and **2** (green) using Maestro.

Rearrangement of the hydrophobic moiety on the central ring (B) to the terminal ring (A) retained agonistic activity
*All compounds are racemate unless otherwise noted

Molecular design and hypothesis

- a. The central aromatic ring (B) of compound **(S)-1** would serve as just a linker to keep the position and distance of terminal aromatic rings (A and C), therefore, would be replaced with a saturated ring system
 - Fluorine-substituted position of compound **(S)-1** would easily access the presumed hydrophobic pocket that the neopentyl alkyl chain of compound **(S)-1** occupies

Flexible alignment of compounds **(S)-1** (gray) and **2** (green) using Maestro.

4-Methyl piperidine ether 3 was identified as a new lead compound which showed potent agonistic activity
*All compounds are racemate unless otherwise noted

Effect of Substituent on the Benzene Ring A

Challenge of compound 3

• Highly lipophilic property

14

Effect of Substituent on the Benzene Ring A

15

Challenge of compound 3

• Highly lipophilic property

Molecular design

 Introduction of a polar linker (X and/or Y) to decrease the lipophilicity and to improve the physicochemical properties

Effect of Substituent on the Benzene Ring A

	Compound	R	hEC ₅₀ nM	E _{max}	clogP	Cell viability ATP % at 30 μM
	3	Me Me Me	11	106%	8.4	0.1
	4 a	Me N N Me Me Me	190	108%	7.6	0.1
Molecular design	4b	₹ ₹ 4 5 5 5 5 5 5 5 5 5 5 5 5 5	97	112%	6.5	0.1
pocket x-Y N B A OMe	4c	Me Me Me	1000	110%	4.0	80.7
	4d		2200	96%	5.8	76.4
	4e	Me Me Me Me	100	107%	5.6	82.2

Introduction of amide moiety as a linker led to the improvement of druggability especially for lipophilicity and cell viability (set the target clogP value: <6.0)</p>

Challenge of compound 4e

• Insufficient agonistic activity

17

18

Challenge of compound 4e

• Insufficient agonistic activity

<u>Molecular design</u>

• Introduction of aromatic ring onto the amide nitrogen to restrict the *N*-alkyl moiety to the presumed hydrophobic pocket

Challenge of compound 4e

• Insufficient agonistic activity

Molecular design

• Introduction of aromatic ring on the amide nitrogen to restrict the *N*-alkyl moiety to the presumed hydrophobic pocket

Conformational preference of N-methylbenzanilide

The structure of *N*-methylbenzanilide derivatives place the aromatic ring in *cis* conformation to each other, and the methyl substituent on nitrogen is *cis* to the carbonyl group

20

Challenge of compound 4e

• Insufficient agonistic activity

Molecular design

• Introduction of aromatic ring on the amide nitrogen to restrict the *N*-alkyl moiety to the presumed hydrophobic pocket

Incorporation of suitable lipophilic moiety onto the nitrogen group of the benzanilide moiety would enhance the agonistic activity

Compound	R ¹	R ²	hEC ₅₀ nM	E _{max}	clogP
4e	Me Me Me	Ме	100	107%	5.6
4f	Ме		140	101%	5.5
4g	Ме	N the	180	105%	4.0

22

R1	Compound	R ¹	R ²	hEC ₅₀ nM	E _{max}	clogP
	4e	Me Me Me	Ме	100	107%	5.6
OMe	4f	Ме		140	101%	5.5
Hypotnesis hydrophobic pocket	4 g	Ме		180	105%	4.0
	4h	Me Me Me	N 3,	26	110%	5.9
amide-cis						

Incorporation of aromatic ring and suitable lipophilic moiety dramatically impacted agonistic activity

23

R1	Compound	R ¹	R ²	hEC ₅₀ nM	E _{max}	clogP
	4e	Me Me Me	Me	100	107%	5.6
Y OMe	4f	Ме		140	101%	5.5
hydrophobic pocket	4 g	Ме		180	105%	4.0
	4h	Me Me Me		26	110%	5.9
amide-cis	4i	Me Me Me	Me N 3	17	109%	6.4

- Incorporation of aromatic ring and suitable lipophilic moiety dramatically impacted agonistic activity
- Introduction of a "magic methyl" group onto the pyridine ring led to a discovery of 4i with a good balance between agonistic activity and lipophilicity

24

Challenge of compound 4i

• Slightly high lipophilicity (Target clogP value: <6.0)

25

Challenge of compound 4i

• Slightly high lipophilicity (Target clogP value: <6.0)

Molecular design

• Replacement of the benzene ring (C) with a 2-alkoxy pyridine ring to reduce the lipophilicity

Basic property is NOT tolerable for agonistic activity

26

Challenge of compound 4i

• Slightly high lipophilicity (Target clogP value: <6.0)

<u>Molecular design</u>

• Replacement of the benzene ring (C) with a 2-alkoxy pyridine ring to reduce the lipophilicity

Basic property is NOT tolerable for agonistic activity

Compound	Ar	hEC ₅₀ nM	hEC ₅₀ nM E _{max}	
4i	× CV	17	109%	6.4
5a	K N	39% at 10 μ Μ	-	5.8
5b	× ×	17	112%	5.8

2,4-Disubstituted pyridine derivative 5b retained agonistic activity with decreased lipophilicity

ompound	Ar	hEC ₅₀ nM	E _{max}	clogP	
5a		39% at 10 μ Μ	-	5.8	
5b	A CONTRACTOR	17	112%	5.8	

<u>2,6-disubstituted pyridine (5a)</u>: presumed active conformer A is less stable than B

2,4-disubstituted pyridine (5b): presumed active conformer C is more stable than D

*All compounds are racemate unless otherwise noted

28

- (S)-5b was identified as an eutomer based on its agonistic activity
- (S)-5b (SCO-267) was selected for further evaluation

Me

Profiles of SCO-267

GPR40 agonistic activity

human GPR40 EC₅₀: 12 nM

Pharmacokinetic profiles in rat/mouse

Good oral bioavailability

Compound	Species F		Intravenous	s (0.1 mg/kg)	Oral (1 mg/kg)		
		F (%)	CL _{total} (mL/h/kg)	Vss (mL/kg)	Cmax (ng/mL)	AUC _{0–8h} (ng·h/mL)	MRT (h)
SCO-267	rat	16	1478	3094	19.9	126.6	4.1
	mouse	26	2584	1349	33.2	98.7	2.3

In vitro Tox assessment

Good cell viability profile (ATP: 92.1% at 30 µM), No risk of hERG inhibition and Ames test

In vivo Tox assessment

Wide safety margin (633- (male) to 776- (female) and 471- (male) to 421- (female) fold in the rat and dog 4-week studies, respectively), No concerns in the safety pharmacology studies

1. Introduction

2. Med. Chem. Campaign to Discover SCO-267

3. Pharmacological Efficacy of SCO-267

- Single Dosing and Repeated Dosing Effects in N-STZ-1.5 Rats (Diabetic Model)
- Repeated Dosing Effects in DIO-rats (Obese Model)
- Single Dosing and Repeated Dosing Effects in CDAHFD-fed Mice (NAFLD Model)

4. Summary

Single Dosing Effects in N-STZ-1.5 Rats (Diabetic Model)

*P<0.025 and #P<0.025 vs. vehicle by one-tailed Williams' test and one-tailed Shirley-Williams test, respectively. Values are presented as mean \pm S.D. (*n* = 6).

* Plasma concentration of 3 mg/kg fasiglifam $(C_{max}: 6170 \text{ ng/ml})$ in N-STZ-1.5 rats is similar levels with clinically effective exposure of 50 mg fasiglifam (C_{max} : 5300 ng/ml) in T2DM patients

Single dosing of SCO-267 increased insulin and **GLP-1** in N-STZ-1.5 rats in a dose-dependent

Single Dosing Effects in N-STZ-1.5 Rats (Diabetic Model)

Male N-STZ-1.5 rats · Ver (25-week-old)

• Vehicle (p.o.) • SCO-267 (p.o.) • Fasiglifam (p.o.)

Single oral dosing→OGTT (1.5 g/kg) 1 h after drug dosing

*P<0.025 and #P<0.025 vs. vehicle by one-tailed Williams' test and one-tailed Shirley-Williams test, respectively. Values are presented as mean ± S.D. (n = 6). Fasi, fasiglifam.

Plasma glucose AUC_{0-120min}

0.3 mg/kg SCO-267 (C_{max}: 22.7 ng/ml) had a glucose-lowering efficacy comparable to that of 3 mg/kg fasiglifam (C_{max}: 6170 ng/ml)

Repeated Dosing Effects in N-STZ-1.5 Rats (Diabetic Model)

33

2 weeks of repeated dosing of SCO-267 resulted in sustained glucose lowering, and the efficacy was much better than that of fasiglifam

I mg/kg (3-fold higher dose of MED) SCO-267 <u>did not</u> induce desensitization in N-STZ-1.5 Rats

Repeated Dosing Effects in DIO-rats (Obese Model)

Male F344 rats (49-week-old) High fat diet (M12451M) Baseline BW: 487 g • Vehicle (p.o.) • SCO-267 (p.o.)

Once daily dosing for 2 weeks→measure GLP-1 and PYY 16 h after the 15th dosing

*P<0.025 vs. vehicle by one-tailed Williams' test. Values are presented as mean ± S.D. (n = 6).

- Plasma GLP-1 and PYY levels remained high 16 h after the final dose of SCO-267
- These hormones contributed to the food intake reduction and body weight loss
- Efficacy on body weight control was durable

Single Effects in CDAHFD-fed Mice (NAFLD Model)

SCO-267 stimulated glucagon and GLP-1 secretion in a mouse model of NAFLD

Repeated Dosing Effects in CDAHFD-fed Mice (NAFLD Model)

 SCO-267 decreased liver weight, liver triglyceride content, liver collagen levels, and plasma ALT levels in CDAHFD-fed mice, a non-diabetic animal model of NAFLD.
 These effects were induced without any effects on glucose levels or body weight

1. Introduction

2. Med. Chem. Campaign to Discover SCO-267

3. Pharmacological Efficacy of SCO-267

- Single Dosing and Repeated Dosing Effects in N-STZ-1.5 Rats (Diabetic Model)
- Repeated Dosing Effects in DIO-rats (Obese Model)
- Single Dosing and Repeated Dosing Effects in CDAHFD-fed Mice (NAFLD Model)

4. Summary

Summary

- New lead compound 3 was discovered by rearrangement of the lipophilic moiety onto the terminal aromatic ring (A) and replacement of central aromatic ring (B) with piperidine linker
- Introduction of amide linker, then incorporation of aromatic ring and suitable lipophilic moiety onto the amide nitrogen showed good balance between agonistic activity and lipophilicity
- Further optimization of terminal ring (C) to reduce the lipophilicity led to the identification of SCO-267
- SCO-267 exhibited potent GPR40 full agonistic activity, good oral bioavailability, and favorable in vitro/in vivo Tox profiles
- SCO-267 effectively improved glycemic control in N-STZ-1.5 rats (*diabetic model*), decreased body weight in DIO-rats (*obese model*), and improved liver parameters in CDAHFD-fed mice (*NAFLD model*)

Summary

Ph1 clinical study to evaluate safety, pharmacokinetics, and pharmacodynamic effect in healthy adults and people with impaired glucose tolerance is ongoing.

Acknowledgement

MedChem

Yasufumi Miyamoto Hideki Furukawa Yasuhiro Hirata Koji Watanabe Yuko Hitomi Yayoi Yoshitomi Jumpei Aida Nobuyuki Takakura Kazuaki Takami Seiji Miwatashi Tsuyoshi Maekawa CMC

Naohiro Taya Toshitake Kobayashi

Pharmacol

Ryo Ito Hikaru Ueno Mitugi Ookawara Shin-ichi Abe Hirohisa Miyashita Hitomi Ogino Tomoki Yoshihara Keisuke Matsuda Yoshiyuki Tsujihata Koji Takeuchi Nobuhiro Nishigaki Yukio Yamada Yusuke Moritoh Masanori Watanabe

Screening

Yoshihiko Hirozane Tomoyuki Odani Takeshi Matsubayashi

DMPK

Teruki Hamada Akihiro Kobayashi Ikumi Chisaki Nobuyuki Amano

Analytical
 Motoo lida
 Toxicol

Yoshimasa Ishimura

Thank you for your attention! & QA session

Contact information:

https://www.scohia.com/eng/contact_en/